skip to main content


Search for: All records

Creators/Authors contains: "Kuntz, K. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 REsubsolar location.

     
    more » « less
  2. Abstract

    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather.

     
    more » « less